If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-3600=0
a = 1; b = 8; c = -3600;
Δ = b2-4ac
Δ = 82-4·1·(-3600)
Δ = 14464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14464}=\sqrt{64*226}=\sqrt{64}*\sqrt{226}=8\sqrt{226}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{226}}{2*1}=\frac{-8-8\sqrt{226}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{226}}{2*1}=\frac{-8+8\sqrt{226}}{2} $
| x^2-15x+105=0 | | 4x-2+2x+14=42 | | 8-7x=13x-8 | | 6-4w=22 | | 2t=8+6 | | 79=7v+9 | | 8x+1+26x-13=180 | | 18+3p=6+6p | | 3=(w/6)-2 | | 3=w/6-2 | | -6(x+1)=48 | | 3x-1+1=10x-15+1 | | F(x)=-5x^2+50x-135 | | 8(x+1)-3(x+4)=7(2-x | | 7(3-x)=7(4-2x) | | x-4=45/5 | | 7x+4=9x-26 | | -10y^2+7y+12=0 | | 7x-4+5x-8=180 | | -4n+16=-3n-11 | | 45/16+3/2n=7/4-19/16 | | -48-(-21)=x/11 | | 4(x+4)-9=4(x-5) | | -3(1-3x)=17+4x | | -25=x-10 | | 1/2x+40=220-x | | 21+2y-5=10y-14-3y | | x÷5+2=8 | | 14000-y=0.4*y | | 3-3x-4=-4 | | (x)(0.6)=114.10 | | 2^2x+5=6 |